Effect of Tricalcium Magnesium Silicate Coating on the Electrochemical and Biological Behavior of Ti-6Al-4V Alloys

نویسندگان

  • Hossein Maleki-Ghaleh
  • Masoud Hafezi
  • Mohammadreza Hadipour
  • Ali Nadernezhad
  • Ermia Aghaie
  • Yashar Behnamian
  • Noor Azuan Abu Osman
  • Xiaohua Liu
چکیده

In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Procedure Time on Microstructure and Corrosion Behavior of ZrTiO4/ZrO2 Nanocomposite Coatings by Plasma Electrolytic Oxidation (PEO) Applied on the Ti-6Al-4V Substrate

In this research, the effect of PEO procedure time on the distinct properties of coatings such as morphology, chemical composition, roughness and corrosion has been studied. A scanning electron microscopy equipped with an energy dispersive spectroscopy was used to study the microstructure of the coatings. In addition, x-ray diffraction (XRD) and roughness meter were used to evaluate the chemica...

متن کامل

Osteoblastic behavior to zirconium coating on Ti-6Al-4V alloy

PURPOSE The purpose of this study was to assess the surface characteristics and the biocompatibility of zirconium (Zr) coating on Ti-6Al-4V alloy surface by radio frequency (RF) magnetron sputtering method. MATERIALS AND METHODS The zirconium films were developed on Ti-6Al-4V discs using RF magnetron sputtering method. Surface profile, surface composition, surface roughness and surface energy...

متن کامل

Investigation of the effect of temperature on the corrosion behavior of welded joints similar of titanium alloy Ti-6Al-4V by friction stir welding method

In this study, corrosion behavior of Ti-6Al-4V titanium alloy joint by friction stir welding with a rotational speed of 375 rpm and a travel speed of 100 mm/min was investigated. The welding procedure was carried out under β-transus temperature that was consisted of equiaxed grains in the stir zone. The corrosion behavior of the welded joint was investigated in 3.5% NaCl solution at temperature...

متن کامل

Nanocrystalline β-Ta Coating Enhances the Longevity and Bioactivity of Medical Titanium Alloys

A β-Ta nanocrystalline coating was engineered onto a Ti-6Al-4V substrate using a double cathode glow discharge technique to improve the corrosion resistance and bioactivity of this biomedical alloy. The new coating has a thickness of ~40 μm and exhibits a compact and homogeneous structure composed of equiaxed β-Ta grains with an average grain size of ~22 nm, which is well adhered on the substra...

متن کامل

Investigation of the effect of temperature on the corrosion behavior of welded joints similar of titanium alloy Ti-6Al-4V by friction stir welding method

In this study, corrosion behavior of Ti-6Al-4V titanium alloy joint by friction stir welding with a rotational speed of 375 rpm and a travel speed of 100 mm/min was investigated. The welding procedure was carried out under β-transus temperature that was consisted of equiaxed grains in the stir zone. The corrosion behavior of the welded joint was investigated in 3.5% NaCl solution at temperature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015